Liquidambar orientalis
Oriental sweet gum

Oriental sweet gum (Liquiadambar orientalis) is a medium-sized deciduous tree, with a natural range limited to southwest Turkey and the Island of Rhodes.

It is economically important due to its natural balsam content, producing oil for use in medicine, cosmetics and soap. The oil is exported, making the species a key source of income for local populations. While species’ wood is not useful for construction, it provides good quality firewood as a result of the oil content. With its attractive form and autumn colours, the tree is also popular as an ornamental.

The oriental sweet gum mainly grows in low altitudes and favours rich, deep, moist soils, such as banks, marshlands and coastal areas. It is also able, however, to grow on dry soils and slopes in altitudes up to 1000 m.

in situ genetic conservation unit
ex situ genetic conservation unit
Map elements
About map elements

To learn more about the map elements, please download the “Pan-European strategy for genetic conservation of forest trees"

Acknowledgements

The following experts have contributed to the development of the EUFORGEN distribution maps:

Fazia Krouchi (Algeria), Hasmik Ghalachyan (Armenia), Thomas Geburek (Austria), Berthold Heinze (Austria), Rudi Litschauer (Austria), Rudolf Litschauer (Austria), Michael Mengl (Austria), Ferdinand Müller (Austria), Franz Starlinger (Austria), Valida Ali-zade (Azerbaijan), Vahid Djalal Hajiyev (Azerbaijan), Karen Cox (Belgium), Bart De Cuyper (Belgium), Olivier Desteucq (Belgium), Patrick Mertens (Belgium), Jos Van Slycken (Belgium), An Vanden Broeck (Belgium), Kristine Vander Mijnsbrugge (Belgium), Dalibor Ballian (Bosnia and Herzegovina), Alexander H. Alexandrov (Bulgaria), Alexander Delkov (Bulgaria), Ivanova Denitsa Pandeva (Bulgaria), Peter Zhelev Stoyanov (Bulgaria), Joso Gracan (Croatia), Marilena Idzojtic (Croatia), Mladen Ivankovic (Croatia), Željka Ivanović (Croatia), Davorin Kajba (Croatia), Hrvoje Marjanovic (Croatia), Sanja Peric (Croatia), Andreas Christou (Cyprus), Xenophon Hadjikyriacou (Cyprus), Václav Buriánek (Czech Republic), Jan Chládek (Czech Republic), Josef Frýdl (Czech Republic), Petr Novotný (Czech Republic), Martin Slovacek (Czech Republic), Zdenek Špišek (Czech Republic), Karel Vancura (Czech Republic), Ulrik Bräuner (Denmark), Bjerne Ditlevsen (Denmark), Jon Kehlet Hansen (Denmark), Jan Svejgaard Jensen (Denmark), Kalev Jðgiste (Estonia), Tiit Maaten (Estonia), Raul Pihu (Estonia), Ülo Tamm (Estonia), Arvo Tullus (Estonia), Aivo Vares (Estonia), Teijo Nikkanen (Finland), Sanna Paanukoski (Finland), Mari Rusanen (Finland), Pekka Vakkari (Finland), Leena Yrjänä (Finland), Daniel Cambon (France), Eric Collin (France), Alexis Ducousso (France), Bruno Fady (France), François Lefèvre (France), Brigitte Musch (France), Sylvie Oddou-Muratorio (France), Luc E. Pâques (France), Julien Saudubray (France), Marc Villar (France), Vlatko Andonovski (FYR Macedonia), Dragi Pop-Stojanov (FYR Macedonia), Merab Machavariani (Georgia), Irina Tvauri (Georgia), Alexander Urushadze (Georgia), Bernd Degen (Germany), Jochen Kleinschmit (Germany), Armin König (Germany), Armin König (Germany), Volker Schneck (Germany), Richard Stephan (Germany), H. H. Kausch-Blecken Von Schmeling (Germany), Georg von Wühlisch (Germany), Iris Wagner (Germany), Heino Wolf (Germany), Paraskevi Alizoti (Greece), Filippos Aravanopoulos (Greece), Andreas Drouzas (Greece), Despina Paitaridou (Greece), Aristotelis C. Papageorgiou (Greece), Kostas Thanos (Greece), Sándor Bordács (Hungary), Csaba Mátyás (Hungary), László Nagy (Hungary), Thröstur Eysteinsson (Iceland), Adalsteinn Sigurgeirsson (Iceland), Halldór Sverrisson (Iceland), John Fennessy (Ireland), Ellen O'Connor (Ireland), Fulvio Ducci (Italy), Silvia Fineschi (Italy), Bartolomeo Schirone (Italy), Marco Cosimo Simeone (Italy), Giovanni Giuseppe Vendramin (Italy), Lorenzo Vietto (Italy), Janis Birgelis (Latvia), Virgilijus Baliuckas (Lithuania), Kestutis Cesnavicius (Lithuania), Darius Danusevicius (Lithuania), Valmantas Kundrotas (Lithuania), Alfas Pliûra (Lithuania), Darius Raudonius (Lithuania), Robert du Fays (Luxembourg), Myriam Heuertz (Luxembourg), Claude Parini (Luxembourg), Fred Trossen (Luxembourg), Frank Wolter (Luxembourg), Joseph Buhagiar (Malta), Eman Calleja (Malta), Ion Palancean (Moldova), Dragos Postolache (Moldova), Gheorghe Postolache (Moldova), Hassan Sbay (Morocco), Tor Myking (Norway), Tore Skrøppa (Norway), Anna Gugala (Poland), Jan Kowalczyk (Poland), Czeslaw Koziol (Poland), Jan Matras (Poland), Zbigniew Sobierajski (Poland), Maria Helena Almeida (Portugal), Filipe Costa e Silva (Portugal), Luís Reis (Portugal), Maria Carolina Varela (Portugal), Ioan Blada (Romania), Alexandru-Lucian Curtu (Romania), Lucian Dinca (Romania), Georgeta Mihai (Romania), Mihai Olaru (Romania), Gheorghe Parnuta (Romania), Natalia Demidova (Russian Federation), Mikhail V. Pridnya (Russian Federation), Andrey Prokazin (Russian Federation), Srdjan Bojovic (Serbia) , Vasilije Isajev (Serbia), Saša Orlovic (Serbia), Rudolf Bruchánik (Slovakia), Roman Longauer (Slovakia), Ladislav Paule (Slovakia), Gregor Bozič (Slovenia), Robert Brus (Slovenia), Katarina Celič (Slovenia), Hojka Kraigher (Slovenia), Andrej Verlič (Slovenia), Marjana Westergren (Slovenia), Ricardo Alía (Spain), Josefa Fernández-López (Spain), Luis Gil Sanchez (Spain), Pablo Gonzalez Goicoechea (Spain), Santiago C. González-Martínez (Spain), Sonia Martin Albertos (Spain), Eduardo Notivol Paino (Spain), María Arantxa Prada (Spain), Alvaro Soto de Viana (Spain), Lennart Ackzell (Sweden), Jonas Bergquist (Sweden), Sanna Black-Samuelsson (Sweden), Jonas Cedergren (Sweden), Gösta Eriksson (Sweden), Markus Bolliger (Switzerland), Felix Gugerli (Switzerland), Rolf Holderegger (Switzerland), Peter Rotach (Switzerland), Marcus Ulber (Switzerland), Sven M.G. de Vries (The Netherlands), Khouja Mohamed Larbi (Tunisia), Murat Alan (Turkey), Gaye Kandemir (Turkey), Gursel Karagöz (Turkey), Zeki Kaya (Turkey), Hasan Özer (Turkey), Hacer Semerci (Turkey), Ferit Toplu (Turkey), Mykola M. Vedmid (Ukraine), Roman T. Volosyanchuk (Ukraine), Stuart A'Hara (United Kingdom), Joan Cottrell (United Kingdom), Colin Edwards (United Kingdom), Michael Frankis (United Kingdom), Jason Hubert (United Kingdom), Karen Russell (United Kingdom), C.J.A. Samuel (United Kingdom).

Technical guidelines for genetic conservation and use

Liquidambar orientalis - Technical guidelines for genetic conservation and use for oriental sweet gum

Publication Year: 2003
Author: Alan, M.; Kaya, Z.

The genetic structure of populations urgently needs to be investigated for conservation purposes.

Although there are currently no comprehensive conservation measures, some practices, such as seed stands, nature conservation areas and clonal seed orchards, have contributed to the dynamic conservation process of oriental sweet gum. To meet the specific conservation requirements, these programmes must be revised to increase the population sizes and ensure representation of diverse habitats within the natural range of the species.

For species with limited genetic information, it is often assumed that genetic variation follows geographic and ecological variation. To capture the adaptive variation in oriental sweet gum, ecogeographic zones should be defined according to climatic variation. The minimum effective size of a gene conservation population is 50 trees, and it is recommended that each population is composed of at least 150-200, to ensure enough flowering and fruiting trees.

Natural regeneration should be stimulated and used wherever ecological conditions allow. Seed production is normally sufficient and seed orchards can produce seed in about seven years. To conserve and enhance the diversity in small populations it is also recommended that effective population sizes are increased by planting local material.

Local material should also be used for afforestation purposes wherever possible. For the further improvement of oriental sweet gum plantations, “selected” and “tested” material (seed or clonal) should be used in future.

In situ stands should be tended, including thinning, understory clearing, and weeding. These and other silvicultural measures in gene conservation stands are more effective than if the stands are left unmanaged.

Multiple uses of the gene conservation stands are encouraged, including oil production. Recommended oil production methods (Topçuolu, 1968) should be followed to ensure sustainable oil production. The designated gene conservation stands should serve as a source of reproductive material for breeding, afforestation, oil production and landscape planting. Utilizing well adapted seed sources is the most effective tool in genetic conservation. Trees can also be planted in forest riverbeds to act as a firebreak for Pinus brutia, and this should be promoted to increase the use of this species.

In order to conserve sufficient genetic variation to maintain the adaptive potential of oriental sweet gum, it is recommended that a network of in situ gene conservation stands is established throughout the distribution area. Several fairly small populations could be selected for the establishment of such a network. Since oriental sweet gum exists in mixed stands with Platanus orientalis and Alnus orientalis which are also Noble Hardwoods, a few natural populations could be extended to conserve the associated species. This in situ network should be complemented with ex situ collections, which will also enable provenance research. The establishment of new clonal seed orchards should be especially considered for oil production to reduce the pressure on natural stands.

In regions where seed sources are limited, local ex situ collections (stands) should be established to serve both conservation and seed production. These collections should typically be established within the local region of provenance. Measures should be taken to protect them against undesired pollination from outside. These stands can be bulk collections, seedling seed orchards and clonal seed orchards. From a conservation perspective, priority should be given to resources that are threatened by extinction or contamination from undesired provenances, small populations and unique populations or individuals.

The genetic structure of populations urgently needs to be investigated for conservation purposes.

Although there are currently no comprehensive conservation measures, some practices, such as seed stands, nature conservation areas and clonal seed orchards, have contributed to the dynamic conservation process of oriental sweet gum. To meet the specific conservation...

Download

Related publications